Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces

نویسندگان

چکیده

We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms a topological index.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curves and Line Bundles on Del Pezzo Surfaces

We extend the results of Pareschi [Pa] on the constancy of the gonality and Clifford index of smooth curves in a complete linear system on Del Pezzo surfaces of degrees ≥ 2 to the case of Del Pezzo surfaces of degree 1, where we explicitly classify the cases where the gonality and Clifford index are not constant. We also classify all cases of exceptional curves on Del Pezzo surfaces, which turn...

متن کامل

k-VERY AMPLE LINE BUNDLES ON DEL PEZZO SURFACES

A k-very ample line bundle L on a Del Pezzo Surface is numerically characterized, improving the results of Biancofiore-Ceresa in [7].

متن کامل

Line Bundles and Curves on a del Pezzo Order

Orders on surfaces provide a rich source of examples of noncommutative surfaces. In [HS05] the authors prove the existence of the analogue of the Picard scheme for orders and in [CK11] the Picard scheme is explicitly computed for an order on P2 ramified on a smooth quartic. In this paper, we continue this line of work, by studying the Picard and Hilbert schemes for an order on P2 ramified on a ...

متن کامل

Vector Bundles on Hirzebruch Surfaces Whose Twists by a Non-ample Line Bundle Have Natural Cohomology

Here we study vector bundles E on the Hirzebruch surface Fe such that their twists by a spanned, but not ample, line bundle M = OFe(h + ef) have natural cohomology, i.e. h(Fe, E(tM)) > 0 implies h(Fe, E(tM)) = 0.

متن کامل

Almost Regular Bundles on Del Pezzo Fibrations

This paper is devoted to the study of a certain class of principal bundles on del Pezzo surfaces, which were introduced and studied by Friedman and Morgan in [10]: The two authors showed that there exists a unique principal bundle (up to isomorphism) on a given (Gorenstein) del Pezzo surface satisfying certain properties. We call these bundles almost regular. In turn, we study them in families....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Manifolds

سال: 2021

ISSN: ['2300-7443']

DOI: https://doi.org/10.1515/coma-2020-0115